
Pre-Owned Practical Time-Series Analysis: Master Time Series Data Processing, Visualization, and Modeling using Python (Paperback)
Key item features
Specs
- Book formatPaperback
- Fiction/nonfictionNon-Fiction
- Pages244
- SubgenreComputers
- EditionStandard Edition
- PublisherPackt Publishing
- Free shipping
Free 30-day returns
How do you want your item?
About this item
Product details
Step by Step guide filled with real world practical examples.
Key Features
- Get your first experience with data analysis with one of the most powerful types of analysis-time-series.
- Find patterns in your data and predict the future pattern based on historical data.
- Learn the statistics, theory, and implementation of Time-series methods using this example-rich guide
Book Description
Time Series Analysis allows us to analyze data which is generated over a period of time and has sequential interdependencies between the observations. This book describes special mathematical tricks and techniques which are geared towards exploring the internal structures of time series data and generating powerful descriptive and predictive insights. Also, the book is full of real-life examples of time series and their analyses using cutting-edge solutions developed in Python.
The book starts with descriptive analysis to create insightful visualizations of internal structures such as trend, seasonality and autocorrelation. Next, the statistical methods of dealing with autocorrelation and non-stationary time series are described. This is followed by exponential smoothing to produce meaningful insights from noisy time series data. At this point, we shift focus towards predictive analysis and introduce autoregressive models such as ARMA and ARIMA for time series forecasting. Later, powerful deep learning methods are presented, to develop accurate forecasting models for complex time series, and under the availability of little domain knowledge. All the topics are illustrated with real-life problem scenarios and their solutions by best-practice implementations in Python.
The book concludes with the Appendix, with a brief discussion of programming and solving data science problems using Python.
What you will learn
- Understand the basic concepts of Time Series Analysis and appreciate its importance for the success of a data science project
- Develop an understanding of loading, exploring, and visualizing time-series data
- Explore auto-correlation and gain knowledge of statistical techniques to deal with non-stationarity time series
- Take advantage of exponential smoothing to tackle noise in time series data
- Learn how to use auto-regressive models to make predictions using time-series data
- Build predictive models on time series using techniques based on auto-regressive moving averages
- Discover recent advancements in deep learning to build accurate forecasting models for time series
- Gain familiarity with the basics of Python as a powerful yet simple to write programming language
What is Pre-Owned: Like New?
What is the Walmart Pre-Owned Program?
Walmart Pre-Owned allows you to find previously owned, well-cared-for items from Walmart’s trusted & performance-managed sellers. Shopping Pre-Owned allows you to bring home the best-quality picks at even lower prices, in addition to extending the life of an item & reducing waste. Find your favorites & shop a range of conditions in every category.
Why Walmart Pre-Owned?
Trusted sellers & quality items
Each Pre-Owned item listed comes from Walmart’s trusted performance-managed sellers, to ensure you get quality items.

Quality you can afford
Save even more on top brands & your most-loved items.

30-day free returns
Don’t love it? Most items offer a 30-day* free return policy, for added peace of mind.
Sustainability
Shopping Pre-Owned helps in extending the life of an item & reducing waste.
Product image for illustration purposes only. The item you receive may vary from the image in minor ways, such as slight differences in appearance, color, and/or design. *Exceptions apply during holiday season, and on certain electronics, collectibles, and jewelry.
